

Subscriber access provided by ISTANBUL TEKNIK UNIV

A Synthesis of (±)-Furoixiolal

Ramesh C. Anand, and Vibha Singh

J. Nat. Prod., 1993, 56 (12), 2207-2209• DOI: 10.1021/np50102a031 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50102a031 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

A SYNTHESIS OF (\pm) -FUROIXIOLAL

RAMESH C. ANAND* and VIBHA SINGH

Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110 016, India

ABSTRACT.—The sesquiterpenoid furanoaldehyde furoixiolal [1] has been synthesized in 7 steps from 3-(p-tolyl) but anal. The key step is a Pummerer rearrangement of 5, which leads via 6 to the furan 7. The synthesis confirms the structure of 1.

Furoixiolal, a sesquiterpenoid furanoaldehyde, was isolated from the aerial parts of *Ixiolaea leptolepis*. It has been assigned structure 1 on the basis of spectroscopic studies (1). In the present paper we report an unambiguous synthesis of furoixiolal [1] to confirm its structure and to have the natural product in reasonable amount for studying its conversion to other p-curcumene type sesquiterpenoids. The synthesis is delineated in Scheme 1.

The starting compound, 3-*p*-tolylbutanal [**2**] (2), was reacted with ethyl 2bromomethyl-2-propenoate in aqueous saturated NH₄Cl/THF system in the presence of Zn dust (3) to form the corresponding hydroxyester, which without isolation was oxidized with Jones' reagent in Me₂CO to ketoester **3** in 72% yield. Conjugate addition of thiophenol to unsaturated ester **3** proceeded smoothly in 89% yield using NaOC₂H₅ in EtOH to yield the sulfide 4. Sodium metaperiodate oxidation of 4 was carried out in MeOH to afford sulfoxide 5 in 87% yield. The sulfoxide 5 was stirred with trifluoroacetic anhydride in Ac₂O followed by basic hydrolysis of the crude resulting product in the presence of HgCl₂ to give an oil 6. This was stirred with H₂SO₄ to yield 3-(3'-p-tolylbutyl)-4-ethoxycarbonylfuran [7] in 62% yield. LAH reduction of 7 to the corresponding carbinol 8 followed by PDC oxidation furnished 3-(3'-ptolylbutyl)-4-formylfuran [1], whose ir and ¹H-nmr spectral data were identical with those shown by Lehmann *et al.* (1).

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.— General procedures were as previously described . (4).

ETHYL 4-KETO-2-METHENYL-6-*p*-TOLYLHEP-TANOATE [**3**].—A mixture of saturated NH_4Cl solution (35 ml), THF (7 ml), 3-*p*-tolylbutanal [**2**]

(4.76 g, 0.029 mol), ethyl 2-bromomethyl-2propenoate (6.0 g, 0.031 mol), and Zn dust (2.6 g, 0.04 mol) was stirred at 60°, and progress of the reaction was monitored on tlc. After most of the aldehyde had reacted (4 h), the mixture was cooled and Et₂O (50 ml) was added. The Et₂O layer was separated and the aqueous layer re-extracted with $Et_2O(40 \text{ ml} \times 3)$. The combined organic phase was washed with brine (50 ml \times 3) and dried. The solvent was removed, and the residue (6.99 g) was dissolved in Me,CO (65 ml). To this stirred solution at 0-5° was added Jones' reagent (11 ml). The mixture was stirred for 0.5 h, diluted with H₂O (150 ml), and extracted with $Et_2O(60 \text{ ml} \times 3)$. The aqueous layer was saturated with NaCl and again extracted with Et₂O. The combined ethereal layers were washed with brine and dried. The solvent was removed, and the residue was chromatographed on Si gel (300 g). The pure ketoester **3** (5.55 g, 72%) was obtained with $n-C_6H_{14}-C_6H_6$ (50:50) as the eluent: ir ν max (film) cm⁻¹ 3080, 1723, 1712, 1633, 1525, 931, 818; ¹H nmr (CDCl₃) δ 1.21-1.42(6H, m), 2.38(3H, s), 2.68(2H, d, J=8 Hz),3.05-3.68(3H, m), 4.32(2H, q, J=7 Hz), 5.42-5.60 (1H, m), 6.11-6.52 (1H, m), 7.21 (4H, s). Anal. calcd for C17H22O3: C 74.42, H 8.00. Found C 74.58, H 8.25.

ETHYL 4-KETO-2-PHENYLTHIOMETHYL-6-p-TOLYLHEPTANONE [4].-To a stirred solution of NaSC₆H₅, prepared from Na (0.78 g, 0.034 mol) in absolute EtOH (60 ml) and C₆H₅SH (13.94 ml, 0.136 mol), was added ketoester 3 (8.9 g, 0.034 mol) in EtOH (20 ml), and the stirring was continued for 4 h. The mixture was poured into cold H₂O (160 ml) and extracted with CH₂Cl, (100 ml \times 3). The combined organic extracts were washed with H₂O and dried. The solvent was removed and the residue was chromatographed on Si gel (325 g). The desired compound 4 was eluted with $n-C_6H_{14}$ -EtOAc (90:10) (13.04 g, 89%): ir ν max (film) cm⁻¹ 3038, 1744, 1712, 1580, 820, 745; ¹H nmr (CDCl₃) δ 1.22–1.42 (6H, m), 2.36 (3H, s), 2.68-3.20(8H, m), 4.12(2H, q, J=7 Hz),7.08-7.30 (9H, m). Anal. calcd for C23H28O3S: C 71.89, H 7.34. Found C 72.11, H 7.62.

ETHYL 4-KETO-2-PHENYLSULFINYLMETHYL-6-p-TOLYLHEPTANOATE [**5**].—To a stirred solution of sulfide (IV) (8.0 g, 0.032 mol) in MeOH (600 ml) at 0–5° was added sodium metaperiodate (9.28, 0.043 mol) in H₂O (40 ml). After 1 h, the solution was stirred at room temperature for 14 h. It was filtered, and the residue was washed with MeOH (60 ml×3). The combined filtrate and washings were concentrated at 30° to attain sulfoxide **5** (7.25 g, 87%); ir (film) ν max cm⁻¹ 1745, 1715, 1580, 1315, 1200, 1150, 1078, 1028, 812, 755; ¹H nmr (CDCl₃) δ 1.22–1.44 (6H, m), 2.32 (3H, s), 2.68–3.40 (8H, m), 4.18 (2H, q, J=7 Hz), 7.20 (4H, s), 7.33–7.68 (5H, m).

4-ETHOXYCARBONYL-2-(2'-p-TOLYL-**PROPYL**)FURAN [7].—To a cooled $(0-5^{\circ})$ and stirred solution of (CF₃CO)₂O (8.0 g, 0.038 mol) in (Ac₂O) (34 ml) was added NaOAc (3.12 g, 0.038 mol) followed by sulfoxide 5 (4.64 g, 0.0116 mol). The mixture was stirred at $0-5^\circ$ for 3 h and then 14 h at room temperature. The solvent was removed under vacuum, and the crude residue was taken up in $Et_2O(150 \text{ ml})$. The Et_2O was washed with H_2O , and the solvent was removed. The residue was refluxed with stirring in MeCN-H₂O (4:1) (200 ml) containing CaCO₃ (6.0 g) and HgCl₂ (3.40 g) for 3 h. The mixture was filtered through Celite, solvent was removed from the filtrate, and the aqueous layer was extracted with $Et_2O(50 \text{ ml} \times 3)$. The combined etheral solutions were washed with H₂O and brine and dried. The solvent was removed, and the residue was chromatographed on Si gel (150 g). The ketoaldehyde 6 was obtained with $n-C_6H_{14}$ -EtOAc (90:10) as the eluent (1.52 g, 45%). To this stirred ice cold liquid 6(1.52 g,0.0052 mol) was added H₂SO₄ (1 ml) dropwise. The mixture was stirred at 50° for 5 min, added to H_2O (100 ml) at 0-5°, and extracted with Et_2O (60 ml \times 3). The combined ethereal layers were washed with H2O, NaHCO3 (5%), and H2O and dried. The solvent was removed, and the residue was chromatographed on Si gel (150 g) to furnish the furoic ester 7 (0.863 g, 62%) using $n-C_6H_{14-1}$ C_6H_6 (80:20) as the eluent: ir ν max (film) cm⁻ 1725, 1543, 1516, 1455, 1200, 1145, 1100, 810, 795, 755; ¹H nmr (CDCl₃) δ 1.12–1.34 (6H, m), 2.28 (3H, s), 2.72-2.94 (2H, m), 3.02-3.33 (1H, m), 4.26(2H, q, J=7 Hz), 6.20(1H, s), 7.19(4H, s)s), 7.83 (1H, s). Anal. calcd for C₁₇H₂₀O₃: C 74.97, H 7.40. Found C 75.23, H 7.64.

4-Formyl-2-(2'-p-tolylpropyl)furan (FUROIXIOLAL) [1].—To a suspension of LAH (0.19 g, 0.005 mol) in Et₂O (15 ml) was added dropwise ester 7 (1.35 g, 0.005 mol) in Et₂O (10 ml). The mixture was refluxed for 6 h and then cooled to 0° . A cold (10°) solution of Na₂SO₄ (10 ml) was added to quench the reaction. The Et2O layer was separated, and the aqueous layer was extracted with Et_2O (20 ml×3). The combined ethereal layers were washed with brine $(20 \text{ ml} \times 2)$ and dried. The solvent was removed to yield the alcohol 8 (0.906 g, 79.5%): ir v max (film) cm⁻¹ 3375, 1555, 1512, 1462, 1030, 910, 818, 735; ¹H nmr (CDCl₃) δ 1.25 (3H, d, J=8 Hz), 1.80 (1H, br, exchangeable with D₂O), 2.25 (3H, s), 2.78-2.98 (2H, m), 3.02-3.33 (1H, m), 4.28 (2H, s), 5.96 (1H, s), 7.12(4H, s), 7.26(1H, s). Anal. calcd for C15H18O2: C 78.28, H 7.82. Found C 78.36, H 7.86.

To a stirred suspension of PDC (1.676 g, 0.006 mol) in CH₂Cl₂(20 ml) was added the above alcohol **8** (0.90 g, 0.0039 mol) in CH₂Cl₂ (5 ml), and the mixture was stirred to 10 h. Dry Et₂O (100 ml) was added to the reaction mixture, the organic

layer was decanted, and the residue was triturated with Et₂O (50 ml×4). The combined ethereal solutions were passed through Si gel (100 g). The column was eluted with Et₂O (150 ml), and the combined solvent was removed. The residue was rechromatographed on Si gel (75 g). The aldehyde, which was obtained using $n-C_6H_{14}-C_6H_6$ (90:10) as the eluent, was distilled under reduced pressure to give **1** (0.705 g, 79%): bp 151–155° (bath)/3–4 mm; ir ν max (film) cm⁻¹ 2956–2866, 2720, 1687, 1534, 1507, 1453, 1399, 1372, 1354, 1272, 1265, 1135, 1100, 1000, 1029, 935, 883, 865, 818, 775, 755; ¹H nmr (CDCl₃) δ 1.26 (3H, d, J=8 Hz), 2.28 (3H, s), 2.78–2.88 (2H, m), 2.98–3.22 (1H, m), 6.26 (1H, s), 7.06 (4H, s), 7.88 (1H, s), 9.81 (1H, s).

LITERATURE CITED

- L. Lehmann, J. Jakupovic, F. Bohlmann, R.M. King, and L. Haegi, *Phytochemistry*, 27, 2994 (1988).
- V.K. Honwad and A.S. Rao, Tetrabedron, 20, 2921 (1964).
- 3. H. Mattes and C. Benezra, *Tetrabedron Lett.*, **26**, 5697 (1985).
- 4. R.C. Anand and A.K. Sinha, J. Chem Soc., Perkin Trans. 1, 2339 (1991).

Received 2 June 1993